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ABSTRACT
Matthew T. Martin
Classification of Chemicals Based on Structuredidibxinformation

“Under the direction of Drs. David J. Dix and IvRasyn”

Thirty years and millions of dollars worth of pesdie registration toxicity studies,
historically stored as hardcopy and scanned doctgnleave been digitized into highly
standardized and structured toxicity data withm Tloxicity Reference Database
(ToxRefDB). Toxicity-based classifications of chieals were performed as a model
application of ToxRefDB. These endpoints will olitely provide the anchoring toxicity
information for the development of predictive madahd biological signatures utilizimg

vitro assay data. Utilizing query and structured datang approaches, toxicity profiles
were uniformly generated for greater than 300 ckalsi Based on observation rate, species
concordance and regulatory relevance, individudlaggregated effects have been selected
to classify the chemicals providing a set of preabte endpoints. ToxRefDB exhibits the
utility of transforming unstructured toxicity dateto structured data and, furthermore, into
computable outputs, and serves as a model for mgpdyich data to address modern

toxicological problems.
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Chapter 1

Literature Review

The United States Environmental Protection AgegidyA) has identified roughly
9,000 environmental chemicals that have been ormeay to be assessed for their human
exposure and toxicity potential (Judson et al ksB). In order to fully assess the toxicity of
these chemicals, the current testing paradigm resjui vivo mammalian toxicity studies
that require thousands of animals, millions of ai@land years to complete. In an effort to
investigate the utility of alternative toxicity teyy strategies, three large-scale efforts have
begun to test libraries of chemicals, includingnoi@ceuticals, industrial chemicals and
pesticides. The National Institutes of Health (NEhemical Genomic Center (NCGC),
National Toxicology Program (NTP) and EPA each hasearch programs for generating
vitro assays results on hundreds if not thousands ofiichés (Collins et al 2008; Inglese et
al 2007; NTP 2004; Dix et al 2007). Current efart QSAR (quantitative structure-activity
relationship) model development are working throalgamical space and into biological
activity andin vitro assay results to bolster predictive power (Zhal 2008).

The combination of unprecedented amounts of bicédglata being generated and
the development of methods for integrating andyanad) these diverse datasets makes it
imperative that the anchoring endpoints and advanssomes be just as computable and
biologically-relevant. A common thread among théseeloping technologies and
approaches is the need for reference toxicity médron and detailed toxicity classifications

of chemicals.



The amount of reference toxicity information orvieonmental chemicals, including
primary studies, study reviews and summarized tepquickly diminishes beyond pesticide
active ingredients, Integrated Risk Informationt®ys (IRIS) chemicals, NTP nominated
chemicals and a few other sources (Judson etRadss). There is little direct literature on
detailed toxicity-based chemical classificationowver, efforts to digitize and structure the
vast stores of open literature and unpublishedstrgitsubmitted studies will provide the
information in a context amenable to classifyingriicals with respect to their toxicity. The
currently available chemical-induced toxicity dagaés vary widely in breadth and depth of
information (Yang et al 2006a, 2006b; Bitsch e2@06). The Yang et al papers (20064,
2006b) summarize the available toxicity databaselspdaces them into various categories
based on their content and structure. IRIS isa@gxample of a database that has large
content, covering greater than 500 chemicals antpiautoxicities, but lacks the
standardization and detailed relational structarngrovide accurate and efficient read-across
(U.S. EPA 1997). Yang et al further describe systéhat store literature citations and
summary toxicity information such as TOXNET, whete invaluable resources for
chemical-specific literature searches and safedgsssnent, but lack searchability and read-
across. ToxML, and related Food and Drug Admiatsin (FDA) databases, and
REPDOSE are two examples of relational formats¢hatently house hundreds of
chemicals and multiple study types in a standaddi@emat, including controlled
vocabularies (Yang et al 2006a; Bitsch et al 2006)ese databases primarily cover
pharmaceuticals and industrial chemicals, butiarigdd in their coverage of pesticides.

There is no direct literature on the robust toyidataset produced for pesticide active-



ingredients, but through regulatory mandates masyigides undergo a full suite of
mammalian toxicity testing.

In addition to the toxicity database efforts, mohemical-centric databases and
curation efforts have begun to identify the lang&caf toxicity information associated with
environmental chemicals (Judson et al In Preske HPA DSSTox program is dedicated to
hand curated chemical structure and using the adamsiructure as a link to external data
sources (US EPA 2007; Richard 2004), which provatesmvaluable resource for
aggregating information across varying domainsitifrmation. These chemical information
domains are well characterized in Judson et dP(&ss), and are broken down into chemical
structure, physicochemical properties, biochemasahy datan vivo toxicology assay data
primary tabular and secondary tabularyivo toxicology test reports via URLR vivo
toxicology summary calls, regulatory listings, cheahcategories and phenotypes. The
information is stored in the EPA ACToR (Aggregaamputational Toxicology Resource)
database, which also uses chemical identity andtsire as a primary link between data
sources (Judson et al 2008). Many of the dataceswithin ACToR were culled from the
internet.

Web accessible toxicological data sources have pesviously characterized (Felsot
2002; Russom 2002; Junghans et al 2002; Winter;20@¥gang 2002; Young 2002;
Patterson 2002). These internet resources rangefbvod and drug toxicity to
environmental and ecological toxicity. Some of itternet sources provide fairly detailed
summaries from cancer-related and genotoxicityistudHowever, the information from

these various sources is dispersed across thaett@nd in a wide variety of formats.



Systems such as TOXNET, DSSTox, ACToR and PUBCHEMehmade many of these
resources available in a compiled format able tedsched based on chemical structure.
With existing efforts to make available, digitiaed structure the toxicity information
landscape for environmental chemicals, researdfams begun to compute with the
compiled information for a variety of purposes. alysis of legacy toxicity data for
understanding the importance of specific toxioggts and their role in the risk assessment
process is underway. Reproductive toxicity stugtyaspective analyses have sought to
understand the role of the second generation iardadentification and the overall
assessment of reproductive toxicity (Janer et @ra) Additionally, retrospective analyses
on developmental toxicity studies measuring theealf running a second species through
developmental toxicity studies. (Janer et al 2007lh)ese retrospective efforts demonstrate
the ability to take structured toxicity informatiand test hypothesis through data analysis.
Using legacy toxicity information for analyzingespes concordance has assisted in
risk assessment decisions for specific tumor tygmesassisted in rodent to human
extrapolation. Gold et al (2001) characterizedcsgseconcordance for 1458 chemicals that
did or did not cause tumors in various speciesinilar approach was taken in the
pharmaceutical industry, but with a focus on thecoodance between human and animal
toxicities with an overall conclusion supportingraal testing (Olson et al 2000).
Additionally, efforts to use surrogate or shottimin vivo endpoints to predict
long-term outcomes have demonstrated the use a€yempxicity information for predictive
toxicology. In Mathews et al (2005), gene mutaiio®almonella anth vivo micronucleus
genetic toxicity studies showed good correlationgi@dicting carcinogenicity. In Allen et al

(2004), specific shorter-term liver pathologies evased as forecasters of liver tumor



formation. These studies may be limited in thpplecation for risk assessment or other
regulatory toxicology applications, but are quaéiamples of utilizing legacy toxicity data
in a computable manner across a relatively largefsehemicals.

The next step taken, as shown in the Zhu et &§PPaper, was the incorporation of
screening data or alternative testing data, inolgidienomics, into predictive toxicology. In
Fielden et al (2002), approaches for predictingcibxusingin silico methods and
alternative testing data was laid out for toxicaddgo advance the understanding of the
molecular basis of toxicity. Iconix’s Drug Matrix@ored experimental information from
genomic studies including detailed pathology angetiged genomic signatures or
classifiers predictive of toxicity (Fielden et &05; Fielden et al 2007) and showed promise
in predicting toxicities of environmental chemicéiartin et al 2007). Importantly, the use
of reference toxicity information was used in tlevelopment of the classifiers in all studies.

Similar governmental efforts to create the dataagament tools for storing genomic
and phenotypic information has created the comjuunait environments for the analysis of
large genomic datasets with corresponding toxmitghenotypic data. NIEHS’s Chemical
Effects in Biological Systems (CEBS) has been dspa to store diverse biological
information resulting from various toxicity and lagical studies (Waters et al 2003).
Systems-based toxicology in the world of drug dv&eyg and drug safety assessment has
begun to take hold and used as a viable approatheldy in the discovery process and later
in assessing toxicological information (Mayne e2@06). Some of the tools that are making
this possible include ingenuity pathway analysnsl & Fliri et al (2005) the ingenuity
pathway analysis tools along with other analysesatestrated that linkingn vitro assay

results to drug label information and adverse ¢ffiata provided mechanistic insight into



purported toxicities and side-effects of drugsmifir system-based and pathway-based

approaches for toxicity prediction to limit the higttrition rate of pharmaceuticals in the

pipeline have produced other tools and productsqApal 2005). These analytical tools

required extensive curation of the biological ktieire and resulted in large databases for
storing the information.

The developmental of biological databases, indgdine controlled vocabularies that
enable read-across, have pushed forward the figtikiwology, but have also identified data
gaps in both general toxicity information and thel@cular basis for the toxicity.
Furthermore, novel challenges have arisen in #ld 6f toxicology and more broadly the
field of biology due to the ever increasing comjitkeand size of generated datasets and the
need for standardization across those datasetsharhieis traditional toxicology, genomics
or screening data. These challenges have givenaighe field of bioinformatics to assist in
solving the issues and challenges by integratimgprder science with biological sciences
(Roos 2001). The field of toxicology continuesutdize bioinformatics tools and resources,
but there are emerging needs for further databag@malytical tool development, including
the digitization of legacy pesticide toxicity infoation into relational databases to make the
information accessible to the scientific community.

The development of reference toxicity and detgdathway and cellular network
databases can provide the context for interpregergerated molecular- and cellular-level
data. The reference toxicity information can bautht of as a form of phenotypic anchoring
even though the information is extrinsic to theempents. The importance and role of
phenotypic anchoring fan vivo toxicogenomics studies has been well laid out Igzau

2003). The fundamental principle of phenotypictaring has experimentally shown to



provide clearer profiles of biological perturbatioim Powell et al (2006), toxicity endpoints
and protein adduct formation was used to phenadylgianchor oxidative stress gene
expression due to acetaminophen exposures. Thermany other examples of using the
concept of phenotypic anchoring for deriving diéfietially expressed genes and genomic
classifiers predictive of the final endpoint (Fietdet al 2005). With high-throughput and
high-content assays being available direct phemoschoring is not possible in the same
way asin vivo experiments. External sources of phenotypic amegpincluding reference
toxicity information, are needed to provide the teom for thein vitro experiments. In
general, the data generation and analysis as dgpli@xicology has integrated a broad set
of scientific disciplines and has formed a sub-gigte called computational toxicology.
The breadth of research in the field of computatiaoxicology was outlined in Kavlock et

al (2007) and further demonstrates the need f@ gemeration and analysis consistency.



Chapter 2

| ntroduction

In an order to progress toward alternative toyitgsting and novel predictive
methods as laid out by the National Academy Scign®AS) National Research Council
(NRC) in “Toxicity Testing in the Twenty-first Caumty: A Vision and a Strategy” (NRC
2007), the scientific community must recycle exigtiegacy data, through digitization, in
order to further enable the driving technologiesstorically, the traditional toxicity studies
performed by industry in support of pesticide ragison have been used for the
development of risk assessments on a single contbaurepresentative group of
compounds and can cost up to $10 million dollarschemical. This vast store of high
guality guideline legacy toxicity information ontdreds of compounds has thus far been
electronically inaccessible. The electronic captmd structuring of pesticide toxicity
information alone will serve as an invaluable resedor both retrospective and prospective
scientific efforts.

Although an extensive body of open literature ¢ayistudies is available, the ability
to automate data mining of unstructured informatad extract uniform toxicity endpoints
across a large chemical set has not been demastrhtitiatives to electronically store the

vast amounts of legacy toxicity data into datab&sesbeen characterized previously (Yang



et al 2006a, 2006b). A portion of these effortgehauccessfully stored toxicity study
information at varying levels of granularity in@ational format utilizing an XML standard
(e.g., ToxML), controlled vocabularies, and/or starlized data models (e.g., REPDOSE
(Bitsch et al 2006)). The chemical coverage festhdatabases includes pharmaceuticals
and industrial chemicals, but is limited in themverage of pesticides.

Pesticide manufacturers undergoing registrati@hraregistration of pesticide
products and formulations through the EPA are mimaddander the Federal Insecticide,
Fungicide and Rodenticide Act (FIFRA) to meet sfieciata requirements, one of which is
toxicological testing. There are various levelsaxicological testing required based on use
pattern, production volume and other factors. eXisting pesticides active ingredients
registered before November 1, 1984 must be reeteldar their effects on human health
and the environment, due to various legislative aa#es including the 1988 FIFRA
amendments and the FIFRA and Federal Food, Drugaschetic Act (FFDCA) as
amended by the Food Quality Protection Act of 1g9BPA). New pesticides active
ingredients, meaning any ingredients introducedest®78, have required extensive testing
to progress from development to registration. Bjgatly, food-use pesticide active
ingredients require a complete setrofivo mammalian oral toxicity studies due to human
oral exposure potential. The results of EPA'seewvon a chemical’s product chemistry,
efficacy, toxicology, environmental fate and efeeahd exposure assessment are primarily
summarized in Reregistration Eligibility DecisidRED) documents.

In order to complete the RED documents and otin@fes reviews, registrant-
submitted toxicity studies are reviewed by the agdor data quality and scientific content

in Data Evaluation Records (DERs). Each DER inetuckviews on individual studies for



their adherence to Office of Prevention, Pesticaled Toxic Substances (OPPTS),
OPPTS/Office of Pesticide Programs (OPP) and Orgéion for Economic Co-operation
and Development (OECD) health effect guidelines tiaae been established in various
forms over the years. DERs also supply detailedystiesign, categorical endpoint, critical
effect and complete dose-response information.

The EPA and other regulatory agencies are invastig novel approaches to predict
toxicity in order, for instance, to reduce the n@mbf animals required for toxicity testing,
to increase mechanistic understanding of chemicatity and to carry out large scale
screening of chemicals that have not previousiyldally characterized. All of these efforts
require a body of high qualiiy vivo toxicity data in order to test and validate new
approaches. To assist these efforts, the EPAvislolging a searchable compilation of data
from regulatory studies and compiling this data iatdatabase called ToxRefDB
(Toxicological Reference Database). The ToxRefiBreis initially focused on entering
subchronic rodent, developmental rat and rabbittigaineration reproduction rat,
chronic/cancer rat and cancer mouse studies. atadase schema is generalized to capture
all OPPTS, OPP, OECD mammalian toxicity guidelingges on technical grade chemicals,
including additional study types such as 28-dayotexicity and developmental
neurotoxicity studies. Additionally, detailed taramical effect vocabularies have been
developed for repeat measure effects such asalichemistry, hematology and urinalysis,
for terminal target organ observations such asrovggight, gross pathology and non-
neoplastic and neoplastic pathology, and for n@awodirected toxicity such as clinical

signs, neurotoxicity, developmental toxicity angneluctive toxicity.
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An important initial application of ToxRefDB is fmwrovide anchoringn vivo toxicity
data for the EPA ToxCast™ research program, whashbeen designed to address the
agency'’s needs for chemical prioritization by usstate-of-the-art approaches in high-
throughput screening (HTS) and toxicogenomics @i&l 2007). Nearly all of the ToxCast
Phase | chemicals are food-use pesticide activedmgnts and have undergone the full suite
of mammalian toxicity tests making for an unpatelliereference set of toxicological
information. The complete and highly standardidathset provided by ToxRefDB
facilitates analysis of the ToxCast Phase | chelsmi@eross chemical, study type, species,
target organ and effect.

Finally, ToxRefDB serves as a model for other gff®o capture quantitative, tabular
toxicology data from legacy and new studies, anohae this data useable for cross-

chemical computational toxicology analysis.
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Chapter 3

M ethods

Data Characteristics

The reviews on the registrant-submitted toxicitydes, known as Data Evaluation
Records or DERs, were collected for roughly 400habals. The file types of the DERs
include TIFF, Microsoft Word, Word Perfect and Pi@Fmats, some of which are not text-
readable. Every DER file was then indexed based file name convention that consisted
of the OPP Pesticide Chemical Code (PC Code), stehification number (MRID), study
type identification number (based on 870 series TH’Rarmonized health effect guidelines),
species code, review identification number (TXRJ arreview version code, which
identified the review as a primary review, secogdariew, supplemental review, updated
executive summary, or a deficient review. In tgt@20 DERs were indexed spanning
roughly 3,000 studies. The searchable file stmectueated an efficient work-flow for
database population. Each study assesses a wnftacal grade chemical’s toxicity
potential in a single species, spanning developahemproduction, subchronic, chronic and
cancer toxicities. DER formats have changed aweg,tbut the underlying content has
remained consistent. The first portion of the D&Rlines the test substance, purity,

lot/batch numbers, MRID, citation, OPPTS guidelmel reviewers of the study. The

12



executive summary captures all of the basic stwdygth information, including species and
strain, doses, number of animals per treatmentpyama any deficiencies in study protocol.
In addition, the executive summary describes thstmedevant observed effects and
establishes the appropriate No Observed AdverseBievel (NOAEL) and Lowest
Observed Adverse Effect Level (LOAEL) endpointstfoe study based on the identified
critical effects. The next sections, which aré teaterial and animal information, can be
used to verify the test substance identity andtyand to provide detailed species/strain and
husbandry information. Full dose response infoiomas then provided in text and tables
under a variety of headings, which in this thesislve referred to as ‘effect type’ and listed
in order of appearance within most DERs. For nbdSRs these are mortality, clinical signs,
clinical chemistry, hematology, urinalysis, grosshmlogy, non-neoplastic pathology and
neoplastic pathology. For reproductive and develaptal studies parental, offspring,
reproductive, maternal and fetal effects are listgolarately. Within each effect type
heading, ‘effect target’ (i.e., clinical parametergdarget organs) results are displayed. Some
effect targets can be described simply as incrgasinlecreasing, whereas pathological
results are presented as specific ‘effect desonptj e.g., hypertrophy and hyperplasia.
Relational Model

In the development of ToxRefDB, a relational moal@broach was taken with input
from other subject-specific database model appemadhcluding ToxML. The resulting
data model is therefore semi-hierarchical in natargngle compound was tested in multiple
studies; each study contained multiple treatmemiigs; multiple effects could be observed
in each treatment group. The data model was conakeed from a chemical-centric view

to propagate data integration and exchange acergsug systems and to facilitate linking of

13



the reference toxicity information to chemical-sfiecata generated using vitro
technologies. Simplifying constraints, based orODEOPPTS harmonized health effect
guidelines, identify study design parameters thastbe met, ranging from the purity and
administration methods of the test compound tantimaber of animals in a treatment group.
The relational model was then implemented intdoéetatructure with established
relationships ensuring data integrity, updateabditd standardization (Figure 1). Specific
components of the relational data model are higkid individually in Appendix A, B, C

and D.
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Figurel. ToxRefDB Relational Data M odel
Development of a Toxicity-based Controlled Vocabulary
The development of controlled vocabularies withoxRefDB was necessary for the

standardization of data captured across the vastugy types and studies performed over
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roughly 30 years. The non-redundant list of teatr®ss various domains provided data
integrity and searchability.

The chemical information within ToxRefDB has relien the chemical identification
and structural curation within EPA’'s DSSTox Progr@siS. EPA 2007) and the chemical
data management within ACToR (Aggregated Computatidoxicology Resource) (Judson
et al In Press). ACToR will link the toxicologytdan ToxRefDB to the high-throughput
screening (HTS) data being generated through tlx€ast program.

The study type vocabulary was based on the urstudy types harmonized by
OECD and OPPTS (U.S. EPA 1996). Specific standaddierminology for study design
was established for species/strain, method/rougelofinistration and units for dose and
duration. Treatment group-related vocabularieevdeveloped to establish the generation,
gender, and dosing period.

A primary goal in reviewing the registrant-submaitttoxicity studies is to establish
NOAEL/LOAEL pairs for a variety of categorical erapts, including systemic, offspring,
maternal, parental, developmental and reproduttixieity, all across the study types.
These categorical endpoints are captured and naedadcross studies at the effect level,
enabling a direct link to the critical effects imiah the NOAEL/LOAEL was derived.

The development of a toxicological effect vocabylaas approached in a domain-
specific manner, with clinical pathology terms Ilgederived from existing literature,
reproductive and developmental toxicity terminol@gjylected from various collaborative
resources including the International Life Scienicessitute’s (ILSI) Developmental
Toxicology Working Group and organ pathology teco#ated from the National

Toxicology Program’s (NTP) “Pathology Code Tabl@dTP 2007). The vocabulary then
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underwent further standardization by mapping allosyymous terms to a single non-
redundant value. A taxonomical approach was thkan for establishing the finalized effect
vocabulary based on a three-tiered hierarchicalaiwdh the effect type being the top layer,
followed by effect target and by effect descriptidixamples of effect type include clinical
chemistry, hematology, urinalysis, body weight, tality, gross pathology, non-neoplastic
pathology, neoplastic pathology, developmentalr@pdoductive effects. Subclasses of
these types include specific target organs (ever,llung, spleen, etc.) or measured analytes
(e.q., ALT, AST, cholesterol, etc.). The specdambinations of effect type and target are
then further sub-classed based on a non-redunéantiptive term (e.qg., increase, decrease,
hypertrophy, atrophy, etc.). Specific to the orgathology terms, each target organ has a set
of regions, zones and cell types that charactéheeite of toxicity. A common
representation of the data throughout the manus@lies on the hierarchical nature of the
vocabulary and will be represented as such wittlystype at the highest level, then tested
species, followed by the combination of effect tyiaeget and description. Vocabularies
were developed under a standardized and taxon@proach. Further groupings and
relationships between entities have been establigia begin the development of a toxicity
endpoint-based ontology.
Data I nput

The ToxRefDB Data Entry Tool was developed in Mgoft Access® and provides
the user interface for all initial data input. B@ling initial quality control, discussed below,
the data is migrated to ToxRefDB, which has beguiemented using the open source
MySQL™ platform. The ability to utilize the legatyxicity data entered into ToxRefDB

requires consistent and accurate data entry. fiihal iphase of data entry has consisted of a
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series of protocols, outlined in a ToxRefDB Staxddaperating Procedures (SOP) document,
that call for mapping the toxicological informatitmstandardized fields and vocabulary and
extracting treatment-related effects from any gistmly. Data entry priority has been
broken down by study type, with the subchronic radehronic/cancer rat and cancer mouse
studies being entered first, followed by multigextemal rat studies and developmental rat
and rabbit studies. The next phase of data enthynwolve the entry of additional study
types in collaboration with OPP following completiof the initial dataset.
Data Quality Control and Management

Entered studies have undergone up to 100% crasskicig, which entails having
secondary data entry personnel validate each ehtatae based on the source information
(primarily the DERS). Internal quality control (Q€onsists of continued cross-checking of
studies by data entry personnel, systematic up@&f€sxRefDB to ensure consistency
across the studies and a tiered QC approach faritezed studies. The tiered approach
involves up to 10% independent QC. Error rateatgrehan 2% trigger 100% QC of related
fields or records.
Data Output and Analysis

Once quality control procedures have been conduatedytic methods can be
applied to specific ToxRefDB outputs. In ordeettsure consistency and repeatability of
analysis a data format output template was eshtadisind directly queried using the
ToxRefAnalysis program, which is written in Java™he first column consists of
concatenated chemical information including CASsg number and chemical name. The
second column represents the effect or endpointsaimapblemented primarily as a

concatenated set of fields representing study typecies and the effect (combination effect
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type, target and description) or aggregated eff@tftect group name). The final column is
primarily the lowest observed effect level (LOEbyt can be categorical or Boolean outputs
as well. ToxRefAnalysis cross-tabulates the resetifrom ToxRefDB and can perform
specific data manipulation functions, includingtoiguishing missing study results from
negative results and filtering out effects or cheats that do or do not meet specific
requirements. The resulting dataset is a matrchefmicals in the first column and effects
along the first row, with LOEL filled in where agpriate. The format is highly amenable to
statistical data analysis, including descriptivd aredictive data mining algorithms.

In order to assess statistically significant specioncordance across different effects,
a permutation study was carried out. For eactceffiee association between chemical and
effect for the rat and mouse study was randomlynpézd one thousand times. The cross-
species concordance for all simulations (permuta)ievas recorded and compared to the
observed concordance, thus giving an estimateeofdhcordance due purely to chance.

Analyses were carried out using R version 2.6.ak#and Gentleman 1996).
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Chapter 4

Results

Summary Data Characterization

ToxRefDB capturedn vivo mammalian toxicity study information from DER
spanning 411 pesticide active chemicals. A subistttese chemicals is being used in the
first phase of the ToxCast program. The focuhf thesis was on the entire set of
ToxRefDB chemicals; however the resulting toxidigsed classifications of chemicals have
been applied to the ToxCast chemical set. Furtbexnthis thesis focuses on systemic
toxicity and cancer endpoints culled from subchraat, chronic/cancer rat and cancer
mouse studies, which cover 334 chemicals.

ToxRefDB enabled analysis to be performed alomgtdogically relevant axes,
including by chemical, NOAEL/LOAEL, categorical guuint, effect, aggregated effect
group, study type and species. Study durationndasethods, data quality, guideline
adherence and gender were additional parametefiidoing or analyses. Initial analysis
was performed to assess regulatory relevance, coipacross chemicals, consistency
across study types and species concordance. Bwntpacross all chronic/cancer rat, cancer
mouse and subchronic rat studies, 31,427 effeats assigned to 4,431 different treatment

groups in a total of 831 studies (Table 1).
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Treatment "
Chemicals | Studies Tge?é[?pe:t Groupsw/ | Effects® (E:frflfelctci"{
Effects
Total 334 831 9,466 4,431 31,427 | 4,865
Subchronic Rat 236 251 2,179 1,370 11,796 | 1,739
Chronic/Cancer Rat 281 300 4,228 1,721 12,215| 1,822
Cancer Mouse 266 280 3,059 1,340 7,416 | 1,304

(a) - Total number of effect type, target, and desion combinations assigned to any treatment grou
(b) - Effects that are criteria for establishing gystemic LOAEL

Tablel. ToxRefDB Summary Statistics

With individual effects being represented as alumoation of study type, species,
effect type, effect target and effect descriptamalyses at varying levels of this effect
taxonomy focused downstream analysis. Of the Fle#fects 1,287 unique effects were
observed, of which 601 were deemed critical effect least a single study. In order to
begin to characterize the chemicals based on #fésgs, the distribution of effects by effect
type enabled comparisons and honed in on the ralestant classes of effects (Figure 2).
The distribution of critical effects revealed timain-neoplastic pathologies predominate
systemic endpoint selection based on the high peage of NOAELs/LOAELs driven by
non-neoplastic pathology. This demonstrates thelatory relevance of this class of
endpoints. Treatment-related changes in body waiigl contribute significantly to
systemic endpoint criteria. However, systemic LQARvere established based solely on
body weight changes in 73 studies primarily athigh dose or maximum tolerated dose
(MTD). Observation rates were similar across stiygg and species with the exception of
the clinical chemistry, hematology and neoplasathplogy, which were not routinely
assessed due to study design or guideline requimsmé& herefore, study design constraints
limited the ability to provide cross-species orssx@tudy classifications for clinical
chemistry, hematology and neoplastic pathologydi#ahal factors, including high rates of

body weight changes and corresponding organ weligmges were consequences of study
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design due to guideline requirements of testingouppe MTD in the chronic/cancer studies
and using the subchronic study to establish the MTDthe chemicals that caused
neoplastic lesions in the rat or mouse chronic/eastudies, 35% caused neoplastic lesions
in both rat and mouse. We define the percentagberhicals that cause an effect in both rat
and mouse over the total that cause the effeatlyntbe rat or mouse the “species
concordance” for that endpoint. Species concorelémcnon-neoplastic pathology was 68%

and consistency between the subchronic and choamicér rat study was 74%.
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Figure 2. Distribution of Effects by Type
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Observation rate analysis of 334 chemicals acrasser mouse, chronic/cancer rat and
subchronic rat studies. % Observed is represdntelde colored bars and is calculated as
the percentage of chemicals with the observed tefiype across the three studies. The dark
blue bars indicate the critical effects that dettitee systemic NOAEL/LOAEL endpoint,
whereas the light blue represents all other effelstsn-neoplastic pathology critical effects
are observed at the highest rate across all thuely s/pes.

Non-neoplastic pathology drove systemic endpafedion, i.e., NOAEL/LOAEL
levels, while neoplastic pathology results inhdgeimform regulatory cancer classification.
The distribution of these pathological responsestfe same 334 chemicals across target
organ characterized the regulatory relevance, ghsen rate and identified organs that were
further investigated for specific pathological etfe(Figure 3). Greater than 50% of the
chemicals caused a treatment-related pathologsgbnse in the liver and greater than 30%
in the rat kidney. This observation made thesamsgbvious toxicologically-relevant
targets and prime candidates for exploring indiaiceffects. Target organ pathology
observation rates were similar across study typespecies and only the liver and kidney

effects were conserved across species as a pattaltayget at greater than 30%, a rate

comparable to neoplastic lesions across all targets
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Figure 3. Distribution of Effectsby Type
Target organ pathology observation rate analysg&3dfchemicals across cancer mouse,
chronic/cancer rat and subchronic rat studies. B8e@ed is represented by the colored bars
and is calculated as the percentage of chemicé#tstive observed pathology across various
target organs. The dark blue bars indicate theakieffects that derived the systemic
NOAEL/LOAEL endpoint, whereas the light blue reets all other effects. Liver and
kidney pathology effects are observed at the higtagés and are among the most prevalent
and sensitive targets for establishing endpoints.

- Critical Effects
[ - All Effects

Specific, individual effect descriptions that tel#o highly detailed pathological
outcomes would provide classifications with thehaist biological specificity. Limitations
of classifying chemicals based solely on specifaividual effects was apparent from our
data as evidenced by there being only 12 detad¢lofogy-related effects that were
observed in greater than 10% of the chemicals €raplIin addition to low observation rates,
biases based on study design and pathology nontereclamited the overall ability to

compare chemical toxicities when individual effestsre used. Liver hypertrophy is the
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only common effect across both species. Relategar-synonymous terms, such as liver
adenoma, combined adenoma/carcinoma and carciveooiéd be more informative if
grouped together. In order address the limitatafrdassifying chemicals based on specific
individual effects, biologically-related groupingteffects were derived. Grouping or
aggregating effects in a non-arbitrary, biologigalliven manner inherently increased

observation rates while maintaining the abilitydtaw biologically relevant conclusions.

STt;SZ Species Effect Type F;:ZC; Effect Description % Observed
Chronic| mouse| Pathology (Non-neoplastic) Liver Hymophy 25%
Chronic rat Pathology (Non-neoplastic) Liver Hypephy 25%
Chronic| mouse Pathology (Neoplastic) Liver Adenoma 21%
Chronic| mouse| Pathology (Non-neoplastic) Liver s 16%
Chronic| mouse Pathology (Neoplastic) Liver Adenggnna:/bciir?éginoma 14%
Chronic rat Pathology (Non-neoplastic)  Kidney Neaygathy 14%
Chronic| mouse| Pathology (Non-neoplastic) Liver Rigtation 14%
Chronic rat Pathology (Non-neoplastic) Liver Vadgnation 12%
Chronic| mouse Pathology (Neoplastic) Liver Carciaom 11%
Chronic rat Pathology (Non-neoplastic)  Thyrojd Hrypasia 11%
Chronic rat Pathology (Neoplastic) Thyroid Adenoma 10%
Chronic rat Pathology (Non-neoplastic) Liver Eogihitic Focus 10%

Table 2. Individual Pathology Effects Observed in Greater than 10% of Chemicals
Extending Cancer Classification to Proliferative Lesions

Classifying chemicals based on carcinogenic pitkistlimited to a small set of
target organs or broadly classed across targehsr@ma carcinogen. In order to increase the
observation rates across target organ cancer fatasisins were extended to include all
proliferative lesions. In general, only neoplagtisions are considered indicative of
carcinogenic potential, but including non-neoplagtthologies related to proliferation
provides a conservative schema for assessing aaitpng carcinogenic potential. For

tumor responses, aggregating effects based satehgoplastic pathology for each target

25



organ increased classification beyond individualis®liver tumor effects as shown in Table
2, but remained limited to mouse liver and rat tiiymeoplasia based on an initial >10%
observation rate cutoff. Extending the cancerteel@lassifications to comprise of all
proliferative lesions increased the number of taoggans classified and included liver,
kidney, thyroid, lung and testes. A simulationdstwas performed to assess if the
concordance between rat and mouse occurs at gresteer than chance across both
neoplastic and proliferative classifications (Feyd). Beyond increasing the overall
observation rate, extending chemical cancer ciaasibns to include proliferative lesions

significantly increased species concordance.
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Figure4. Simulation Study Analysis of Species Concordance

Extending cancer classification to include proklfere lesions increases both observation
rate and species concordance. Simulation stuaygud$i00 permutations were performed to
compare 279 rat and 260 mouse chronic/cancer sasujts for neoplastic and proliferative
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lesions across the liver and kidney. The simulategirical density (frequency) based on
random alignment of rat and mouse observed ratasdas the distribution of concordance
expected by chance, whereas the observed concerdasicown with the blue arrow. The
single asterisk (p<0.01) and double asterisk (@3D.@efine statistically significant species
concordance.
Toxicity Endpoint and Cancer Progression Schema

Study type, species and dose are examples diwdds and properties that are
inherent to the database structure, whereas tagamthips between effects are not. Specific
biological processes have been well laid out wegpect to disease progression, including
cancer formation (Hanahan and Weinberg 2000). oAigi the toxicity data stored in
ToxRefDB did not provide molecular insight into can progression, effects captured in the
database provided key events involved in the pssyoe of a pathological response leading

to tumor formation and cancer. Figure 5 concepaslthe endpoint progression scoring

along both an endpoint and cancer progressionraaunt for which each chemical was

assigned.
-~ ' / . Proliferative
No Observed Clinical Non-| Prollferatlve
| Pathology Chemistry | Pathology Proliferation Pre-| Neoplastlc Neoplastic
: i N ‘ Pathology
\ 0 1 2 3 4 5

Endpoint Progression

Figure5. Endpoint Progression Continuum for Ordinal Scoring

Systemic toxicity and cancer progression is illatgd as an endpoint progression continuum.
The progression begins with no observed patholbgygiven target organ, then to clinical
chemistry changes that are pertinent to the tanggin, followed by non-neoplastic non-
proliferative pathology, including hypertrophy,@&thy, necrosis and inflammation.
Progression of these endpoints up to this poidtiieen by observation rate decline and
increasing toxicological relevance. The continutien progresses toward proliferative
lesions and is broken down into three categoriediferation (cell proliferation and
hyperplasia); pre-neoplastic lesions (foci and hplastic nodules); neoplastic (tumors).
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Endpoint progression scoring reduced the possibksifications from thousands of
individual effects to a set of target organs wikaciated ordinal scores. The distribution of
endpoint progression for liver and kidney charazeat target level effects without requiring
pathology calls along the entire continuum (Figbixe For example, resmethrin caused
treatment-related increases in hyperplastic nodalése liver, but did not progress to tumor
formation. In contrast, metaldehyde caused treatiredated increases in liver tumors, but
was not identified as causing any preneoplastiotsssuch as hyperplastic nodules or foci,
which can be assumed to have occurred as a pre@wsot to liver tumor formation.
Individual or even aggregated effect classificadiomay miss the associations that these and
many other chemicals may have, but endpoint pregrescores develop and maintain these
associations throughout the analysis. Tumor faonatoes not necessarily require pre-
neoplastic lesions. However, in order to geneediizall target organs and tumor types the

order of proliferation to pre-neoplastic to neoptawas used.
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Figure 6. Endpoint Progression Scoring Distribution for Liver and Kidney
Based on endpoint progression, 334 chemicals voered across 279 rat chronic/cancer and
260 mouse cancer studies for liver and kidney pagyo The chemicals are scored based on
the maximum value across the target organ. Ftanes, if a chemical causes only liver
hypertrophy then the chemical would be assignedoa @on-neoplastic pathology, whereas
if the chemical causes hypertrophy and hyperplhgahemical would be assigned a 3 for
proliferation. Clinical chemistry is target specjfwith analytes being labeled by target
organ, e.g., ALT for liver and urea nitrogen fodkey.
Potency Ranking

Relative potency across the observed effects geovinsight into the sensitivity and
relevance of the endpoint and a categorical appraachemical classification. To derive
non-arbitrary dosing intervals, lowest observededdsng/kg/day) for body weight changes
were analyzed and separated into equivalent geibiiis (data not shown). The resulting
bins,<15,<50,<150,<500 and >500 mg/kg/day, were then applied to alpemts. For
instance, a chemical that caused liver hypertragittymg/kg/day would be assigned a 5, at

25 mg/kg/day a 4 and so on. If the effect wasobsierved then a zero was assigned.
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Potency rankings were used to filter out high-deféects and to compare across effects. For
example, a chemical could be deemed negativevier Weight increase if it was observed at
greater than 500 mg/kg/day or if no correspondivey Ipathology was observed at or below
the observed dose level.
Toxicity-based Classification of Chemicals

With identified target organs, extended effectsks, aggregation of systemic
toxicity and cancer effects, toxicity-based endpoimere curated based on toxicological
relatedness, biological relevance, observation ratpilatory relevance and potency. Across
rat and mouse studies and various target orgaswuhset of endpoints were selected as
examples of diverse toxicities and included indiband aggregated effects used for the
final classification of the chemical set (Figure Tterestingly, the rate of tumorigens and
multisite tumorigens were similar between rat araige studies, even though target organ-
specific tumorigenicity observation rates demonsttavide variation between species. The
selected endpoints along with target organ-speeifoipoint progression scores provided

uniform characterization of the chemical set ayway levels of toxicological order.
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Figure7. Rat and Mouse Toxicity Endpoints Suitable for Prediction
Selected toxicity endpoints from chronic/cancerarad cancer mouse studies across 283 and
256 chemicals, respectively, derived from individarad aggregated effects.
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Chapter 5

Discussion, Conclusions and Future Directions

Discussion

Chemical toxicity prediction and subsequent vdlaahave not only been limited by
the number of input parameters, but by the anchamdpoints the model or system was
developed to replace or predict. Historically, lmareng endpoints and phenotypes have been
high-level Boolean classifications, e.g., carcinoge non-carcinogen (Benigni 1991,
Benigni and Zito 2004). Efforts to classify cheaigcbased on species-specific and target
organ phenotypic outcomes from open literaturegowernmental study reports have
required manual collation that is not easily updated has been limited in endpoint and
chemical coverage (Richard and Williams 2003; Ridl2004). Many of the predictive
methods assess a chemical’s potential to pertstindi biological processes, whereas these
high-level chemical classifications have often biedlnenced by external factors, including
exposure scenarios, risk assessment processeslanthnagement decisions, thus
distancing the classification from the biologicatBlevant toxicity potential of a chemical.
Ideally, chemical prioritization and risk assesstriantors would only subsequently

influence the interpretation and application of phedicted outcomes.
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Pesticide active ingredients have robust toxigitfiles and are opportune datasets
for the advancement of predictive toxicology. Byfarmly reviewing toxicity information,
DERs present the full-breadth of toxicity infornaatifor a single study and summarize
treatment-related effects. DERs also contributestoassessments and human cancer
classifications that begin to identify only the msensitive or relevant endpoints of concern.
Therefore, DERs provide much of the informatiort th@es into chemical safety assessment
without losing toxicologically-relevant effects aaddpoints screened out in the risk
assessment process.

ToxRefDB is the tool for digitizing, storing anttcturing the immense amounts of
toxicity data in an updateable, searchable and/aable manner. The development of a
standardized vocabulary gave the ability to readsscstudy types, species and chemicals,
thus transforming the manner in which toxicity pled can be generated. Given a class of
compounds or a large set of studies, consisteadé@selationships between chemicals or
studies can be analyzed in a matter of minutes rsearch application, ToxRefDB can
generate toxicity profiles across hundreds of cammps and multiple study types for
chemical classification in the ToxCast program.

The framework for reducing greater than 31,008&#f across 334 chemicals into
relevant and predictable chemical classificati@ied on a combination of measurable
factors, including observation or incidence raggulatory relevance or critical effect
analysis, consistency across study type and speareprdance. The effect taxonomy, i.e.,
study type, species, effect type, target and dasan, permitted analysis at various levels of
granularity. Summary results of effect type anf@aftarget observation rates and regulatory

relevance identified pathology, and more specifydaler, kidney, thyroid, lung, adrenal
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gland and testis, as predictable endpoints basedh amtial 10% observation rate cutoff.
The cutoff was established based on an estimadgdiéncy level required for predicting
endpoints with high specificity and sensitivity tlvas only used as an initial filter.
Endpoints of interest, such as rat liver tumorigéy were included despite less than 10%
observation rate based on regulatory relevancéher dactors.

Following effect type and effect target analysiect description or individual effect
analysis identified a small subset of predictabldpmints, but also demonstrated the
limitations of classifying chemicals at such a dgdve level. For some effects or sets of
effects it was logical to step up the taxonomyh effect target level and classify chemicals
based on target organ pathology. However, thiscgmh decreases the biological specificity
and potentially collapses hundreds of effects angingle endpoint. An example approach of
developing biologically-driven groups of effectsssthe extension of cancer classification
beyond tumorigenicity to include all proliferatipathology, which not only increased
observation rates but also species concordance.intheased species concordance further
demonstrated that shared proliferative responsessspecies better characterized a
chemical’s toxicity potential and began to distirsjubetween species-specific susceptibility
for tumor formation and mode-of-action or pharmanekc differences. Other factors, such
as pathology nomenclature changes over time (WalfMann 2005), may also explain why
extending neoplastic lesions to proliferative lesiincreases species concordance, but
because many of the rat and mouse chronic/canagiestwere run in conjunction with each
other nomenclature bias should be minimal. Nore#isethe approach provides an example
of aggregating individual effects to create powecancer-related endpoints that would

otherwise not be possible for target organs suchekidney.
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Toxicity-based classification of chemicals is lied to a small subset of target
organs, including the liver, kidney, thyroid, tesind lung, and may only apply to a single
species. The notion of endpoint progression agdsemitations in individual effect
classification due to pathology nomenclature, stielsign, dose spacing and reporting across
the above target organs and extends target organtyao an ordinal designation that
broadens the target organs classified. Overlagotgncy information onto all endpoints
provides additional categorical data in the forndo$ing intervals facilitating cross-chemical
and cross-endpoint comparisons. Potency rankiag®iso begin to distinguish high-dose
and secondary effects versus sensitive target esgadific effects.

Utilizing the endpoint selection framework, a suliffeall observed effects has been
identified as anchoring chronic systemic toxicitylaancer endpoints for Phase | of the
ToxCast program. A combination of chemical clasatfons based on individual effects,
aggregated effects and organ-level endpoint pregmeencompass systemic and cancer
effects with observation rates that ensure preliltgalong with biologically-relevant
endpoints that enable application and biologicaification of generated prediction models.
Conclusions

Unparalleled amounts of legacy toxicity information pesticides have been captured
in a structured format, which provides a platfoonrepeated and updated chemical
characterization and classification. The abildysearch and filter across 30 years worth of
toxicity data required extensive amounts of dataaization, annotation and curation and
was made possible through the development of astatandardized vocabulary spanning
most fields and data elements within ToxRefDB. Wgation of structured toxicity

information to the classification of large chemisats, e.g., ToxCast Phase | chemicals,
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required further data processing using manual atmh@ated structured data mining
approaches. Based on specific requirements, imguzbservation rates and regulatory
relevance, an endpoint selection framework wasiegpbd the complete dataset and in turn
created a manageable set of endpoints for whichhmical set was classified. Whether the
analyses of ToxRefDB data represent retrospeatigleling, or research applications,
ToxRefDB serves as a resource for scientists,asslessors and regulators to begin to look
across a larger landscape of chemical and toxspiace.
Future Directions

Upon completion of data entry and quality contsailar endpoint selection
processes will be applied to the multigeneratigmroductive and prenatal developmental
study data to determine a set of anchoring endptanpredict using HTS and genomic data
generated through the ToxCast research prograraddition to expanding the toxicity
coverage to other study types, ToxCast Phase pestieides or chemicals without DERs
will undergo a full literature search and liter&ueview process to fill the data gaps where
studies are available. Upon review, the studidisbeientered into ToxRefDB. A formal
QA/QC process, as described in the methods seetitihe performed on all entered studies
and will provide the necessary review for evenfudilic release of the data. A staged public
release of the data stored within ToxRefDB is p&hfollowing internal EPA review. The
initial phase will consist of providing the finalifputs, e.g., matrix of chemicals and
associated effects and endpoints, directly or thinalatabase management systems such as
EPA’'s ACToR. The initial phase is to include theanic, cancer and reproductive
endpoints. The second phase will include the seled developmental toxicity and revisions

of previously released endpoints in the final mxafiormat. The third phase would be the
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availability of the entire database for detailedrsbing, possibly through the development of
a web-based query tool.

This novel application of ToxRefDB for the purpageclassifying chemicals
demonstrates the ability to transform unstructunéarmation into structured data and to
transform structured data into computable datae fidxt step for the generated toxicity
profiles is the anchoring of the endpoints to HRf genomic data generated within the
ToxCast research program. Many machine learnidgoaedictive algorithms will be used
along with novel methods that apply to the divefagset of biochemical, molecular, and
cell-based assay data (Kavlock et al In press)dithmhally, the structured information can
be reformatted into computable outputs specifiotteer analyses. Retrospective analyses
across the major study types are being performadgess the value of entire studies or
components of a study. For example, rat and rgdvbitatal developmental toxicity studies
are mandated through FQPA and an analysis of tlue v both species is being assessed in
reference to its regulatory impact. Multigenemtieproductive toxicity studies have
traditionally gone through two generations andvhleie of the second generation is being
assessed for its regulatory impact and the anatyaisalso influence study design changes
in subsequent guideline studies.

Beyond ToxRefDB and the initial anchoring to HTi®layenomic data, there is a
need to address data analysis and interpretasaessdue to chemical metabolism and
bioactivation. As observed in much of the tradiibtoxicity study results, species
concordance is limited and the lack of concordarasebe highly attributed to
pharmacokinetic (PK) and pharmacodynamic (PD) ckfiees between species (Henderson

1996). One piece of the PK/PD species differemcése capability to biotransform the
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parent compound to its active metabolite. Withdaiesformation required for various
compounds to demonstrate their toxicitigsyitro assays without metabolic capabilities have
the potential to miss the relevant activities agged with adverse outcomes obserued

vivo. Metabolism prediction and metabolic study daa lse used to assist in identifying
chemicals that require metabolic activation. Hogrewunning all potential active
metabolites for even 300 chemicals through assatsdb not have or have limited metabolic
capability would require vast financial resourced ahemical procurement may not even be
possible. Since most screening programs have lbeiead primarily to testing parent
compounds and only a few metabolites, incorporatiegabolic activation into the analysis
process, that is linking assay datart@ivo outcomes, can be performed from three different
views: chemistry, biology and informatics. Usirtgemistry to predict potential metabolites
or supply known active metabolites can help idgrdiid filter out negative assay results
possibly due to a lack of metabolic activation, isutmited in its application of further
developing the predictions using only parent conmglbassay data. A biology-centric
approach would involve comparimigvitro assay results across similar targets thatrabdo
not have metabolic capacity. The approach wowdd ake assay data, e.g., genomic data on
phase | and Il metabolism enzymes, to act as sat@sdor understanding the metabolism of
the parent compound. Other approaches for usimgro screening data to predict human
drug metabolism have been performed or proposdiéite and Elkins 2007). The final
biological piece would be to use the anchoring entp derived from ToxRefDB and

current parent-metabolite pairs being tested withitro assays to provide reference cases.
Understanding the biology will ultimately assistimterpreting the data, but may be limited

in its scalability and applicability across all 3€lflemicals and beyond due to the amount of
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rigorous scientific inquiry for each potential casen informatic-centered approach would
involve utilizing prediction algorithms to teaset@ssays, with or without metabolic
capacity, that provide the greatest predictabditg therefore could be applied to all
chemicals and endpoints. The greatest limitatigh guch an approach is that potentially
valuable and highly informative assays results ageemed irrelevant due to the lack of
direct predictability for any given endpoint.

An obvious solution is to integrate the approadresinformation derived from these
approaches to bolster the final prediction modéledeling and systems biology approaches
integrating SAR models and biological data from H&periments have been proposed
(Bugrim et al 2004), but the application to toxygirediction models and high-throughput
analysis has yet to be demonstrated. The tedtgblathesis is that incorporating chemical
and biological information into the analysis pracesll enable and strengthen prediction of
toxicities caused by active metabolites and forcltonly the parent chemical was tested.

Initially, the prediction models will be used taquitize further toxicity testing for
chemicals in which little to no toxicity data exidBeyond chemical prioritization, the vast
amount of data being digitized and generated mag haplication to hazard and risk
assessment. Biochemical, molecular, cellular andehorganism data can be placed into
the context of mode-of-action (MOA) and human ralesy frameworks as described in
Meek et al (2003) and Dellarco and Baetcke (200®)onjunction with detailed toxicity
data from ToxRefDBin vitro assay and model organism data can assist in figiagtkey
events leading to adverse outcomes in a systerradi¢cransparent fashion. Additionally, the
diversity of cell types, both rodent and human,lddae used to inform species extrapolation

and human relevancy. Addressing the role of mdishan interpretingn vitro assay and

39



extending the assay data and resulting predictiodets to the risk assessment arena will

move toxicology toward a more predictive and me@tanscience.
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APPENDIX A

Chemical Component of Relational Data Model

Chemical

Ikp_Chemical

ToxRef_Chemical_|D

grp_Chemical

OPP_PC_Code

Cherical_Group_|D

Chemical_Marme
Chemical _Group Mame

Chemical_CAS MO

Chermical_MName_Alt

DssTox CID

grp_Chemical j2h

Chemical_Group_|D

Ikp_MRID_Citation

Chemical CAS MO

MRID_Mo

OPPIN_Study_Citation
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APPENDIX B

Study Design Component of Relational Data Model

tbl_Study_General_Info

RTO_ID

RTD_FileName

MRID_No

MRID_No_Supplemental

Historic_Study [Ds

TXR_NO

Historic_Review DS

Study_Review_Year

Study_Type_OPPTS_Guideline_No

Study_Type_NonGuideline_Mame

Study_Type_NonGuideline_Desc

Dose_Duration_Start

Dose_Duration_Start_Unit

Dose_Duration_Ahsolute

Dose_Duration_Unit

Dose_Duration_Relative

RTD_Data_Usability_Code

Study_Deficiences

Test_Material_Lot_No

Test_Material_Batch_No

Test_Material Comments

Study Design

Ikp_RTD_Data_Usability_Code

RTO_Data_Usability_Code

RTO_Data_Uahility_Code_Desc

thi_Study_Endpoint

Study_EndPoint_ID

thl_Study_Endpoint_Basis

RTD_ID

Study_Endpoint_Basis_ID

Study_EndPoint_Category_ID

Study_Endpoint_ID

Study EndPoint_Sex_Category 1D

Study_Encpoint_Type_ 1D

LOAEL “alue

Stucy._Endpaint_Target_ID

LOAEL_Unit

Stucy. Encpoint_Desc 1D

LOAEL_Nat_Established_Flag

Study_Encpoint_Desc

NOAEL Walue

Stucy_Endpaint_Site_ID1

MNOAEL_Unit

Study_Endpoint_Site_ID2

NOAEL_Not_Established_Flag

Study_Endpoint_FocalDiffuse

CreatedBy

CreatedBy

CreatedWhen

Createdwhen

EditedBy

EciiteciBy

Editedvvhen

Editeciwhen

Test_Material Purity

IKp_Test_Animal_Type_Memberjxn)

Test_Material Purity_ Comments

Test_Animal_Species_ID

Test_Material_Source

Test_Animal_Strain_ID

ToxRef_Chemical_ID

Test_Animal_Species (D

Test_Animal_Strain_ID

Test_Animal_Total

Test_Animal_Total_Unit

Test_Animal_Mating_Methor_ID

Test_Animal_Comments

Ikp_Mating_Method

H

Dose_Administration_Route D

Mating_Method_ID

Dose_Range_Min

Mating_Method

Dose Range_Max

Mating_Method_Desc

Dose_Range_Unit

Study_General_Dose_Supplemental_Info

CreatedBy

CreatedWhen

EcitedBy

Editedvhen

Gen_Study_Deficiences

Ikp_Test_Animal_Species

Test_Animal_Species ID

Test_Animal_Species_Short

Test_Animal_Species_Long

Ikp_Test_Animal_Strain

Test_Animal_Strain_ID

Test_Animal_Strain
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APPENDIX C

Treatment Group Component of Relational Data Model

Treatment Group

Ikp_Result Animal_Group_ Category

tbl_Result_Animal_Group Result_Animal_Group_Category ID
L Result_Animal_Group_ID Result_Animal_Group_Category
RTD_ID Result_Animal_Group Category Desc

Result_Animal_Group_Category_ 1D

Ikp_Test _Animal_Sex Category

Result_aAnimal_Group_Sex_|D =i i

Result_Animal_Group_Dose Test_Animal_Sex_Categary 1D
Result_Animal_Group_Dose_Unit Test_Animal_Sex_Category_Short_MNarne
Result_Animal_Group_Duration Test_Animal_Sex_Category_Long_Name

Test_Animal_Sex_ Category Desc
Result_Animal_ Group_Duration_Unit = —oFK_AIBgOTY.

Result_Animal_G ] Period_T 8]
ESUTL ANIME_LSrOUp_Dnse_Peron. Tvhe. Ikp_Result_Animal_Group_Dose Period_Type
Result_Animal_Graup_Mo

= = b Result_Animal_Group Dose_Period_Type_|D

CreatedBy

Result_Animal_Group_Dose_Period_Type

Createdvhen
EditedBy
Editedywhen
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APPENDIX D

Treatment-related Effect Component of RelationablDdodel

Treatment-related Effect

tbl_InVive_ Result

Result_ID

Result_animal_Group_ID

Result_Type_ID

Ikp_Result_Type

thl_InVive Result Quant

Result_Target 1D

Ikp_Result_Memberijxn)

Result_Quant_ID

Result_Description_ID

Study Result Type ID
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Studhy_Result_Type
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Ikp_Result_Target

Result_ID
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Result_Site_|D1

Study_Result_Desc_|D

Result_TimePoint

Result_Site_ D2

Ikp_Result_Category

Result_TimePaint_Unit
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Result_Category_ID

Result_Severity_Score

Result_Endpoint_Eoolean

Ikp_Resutt_Target_Site(jxn)

Result_Category

Result_Percent_Difference

Study EndPaint Category ID

Result_Target_ID

Study_Result_Target_ID

Studhy Result_Target

Study Result_Target_Misc

Result_Incident_Total

CreatedBy

Result_Target_Site_ID

Ikp_Result_Desc

Result_Total_Treatment

Createdvwhen
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EditedBy
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Edited¥hen

Study Result Desc D
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Result_Quant_Comment
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EditedBy
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